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Abstract

This paper develops a method for solving for the dynamic general equilibrium of a deterministic con-
tinuous time overlapping generations model with a finite-horizon life-cycle. The model has isoelastic
preferences and allows for general assumptions about individual endowments and demographics. Solv-
ing for an equilibrium reduces to solving a nonlinear integral equation. In the special case of log utility, the
integral equation is linear and global approximations to a solution are easily computed with linear algebra.
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1. Introduction

The overlapping generations model is one of the workhorses of modern macroeconomics. This
paper outlines a continuous time overlapping generations model where agents live for a given
finite interval of time so that genuine life-cycle behavior is possible.1

In applied macroeconomics, overlapping generations models are set in discrete time and in-
dividuals have many decision periods per lifetime [4,5]. Long-lived models of this kind are
attractive because they allow for realistic timing conventions and an intuitive calibration to an-

E-mail address: cedmond@stern.nyu.edu.
1 Following Yaari [1], Blanchard [2] studies a continuous time overlapping generations model where agents die at

an exogenously given exponential rate. This simplifies the analysis considerably but also excludes life-cycle behavior.
Weil [3] studies a similar model of overlapping families with infinite horizons. Other related literature is discussed at the
end of the paper.
0022-0531/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jet.2008.03.006
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nual or quarterly data. In practice, however, long-lived discrete time models are difficult to work
with computationally. The main advantage of the continuous time model outlined below is that it
simultaneously permits agents to have many decisions per lifetime but is computationally simple.

The model is presented in Section 2 and allows for isoelastic utility and general assumptions
about individual endowments (and demographics). The main result of this paper is given in Sec-
tion 3 which shows how to represent the equilibrium fixed point problem as a specific, generally
nonlinear, integral equation which needs to be solved for an unknown intertemporal price func-
tion. Section 4 shows for the special case of log utility that this integral equation is linear and
solving for an equilibrium involves finding intertemporal prices p(t) satisfying:

p(t) =
∞∫

0

p(s)k(t, s) ds + f (t)

for time t ∈ [0,∞). In this equation the integral kernel k(t, s) and forcing process f (t) are
known functions of primitives of the economy, including individual endowments and the initial
asset distribution. Although this problem generally does not have a closed form solution, there are
well known algorithms for finding global approximations to its solution [6–9]. These methods
exploit the analogy between the linear integral equation and finite dimensional linear algebra.
The case of general isoelastic utility leads to a similar (but nonlinear) integral equation that, as
discussed in Section 5, is also computationally tractable—no matter how long-lived individuals
are.

2. Model

Consider a deterministic exchange economy populated by an infinity of overlapping genera-
tions of agents. Time is continuous and indexed by t ∈ [0,∞).

Demographics. The economy is populated by two kinds of agents. First, at each instant of time
t > 0 a continuum of identical agents are born and live for a finite period of time, l > 0. Second,
at date t = 0 there is a pre-existing mass of agents. Since agents have a lifetime of l, at date
t = 0 we need to account for all the generations ‘born’ in the interval (−l,0]. These transitional
generations play the role of the ‘initial old’ in the classic two-period overlapping generations
model of Diamond [10]. A transitional generation v ∈ (−l,0] lives over t ∈ [0, v + l). Let the set
of all generations alive at date t � 0 be G(t) := (t − l, t]. Also, let the set of dates over which
generation v ∈ (−l,∞) lives be A(v) := {t � 0 | max[0, v] � t < v + l}. For v � 0 this is just
[v, v + l). To simplify notation, let the total population be constant (and normalized to size one).2

Endowments. Each instant t generation v is endowed with an exogenous amount of a single
non-storable consumption good y(t, v) � 0. No endowment is received if the agent is not alive:
y(t, v) = 0 for all (t, v) /∈ A(v) × G(t). Let Y(t) := ∫

G(t)
y(t, v) dv > 0 denote the aggregate

endowment at t and let ϕ(t, v) := y(t, v)/Y (t) � 0 denote the density of generation v’s endow-
ment.

In addition to physical endowments, transitional generations are endowed with assets—pre-
existing claims to consumption. Let a(0, v) denote the net assets of generation v at time t = 0.

2 Appendix A generalizes the model to allow for aggregate population growth, changes in the relative proportions of
young and old, and within-cohort endowment heterogeneity.



598 C. Edmond / Journal of Economic Theory 143 (2008) 596–609
For generations v > 0 these are zero. For transitional generations v ∈ G(0) these may be positive
or negative but must net out to zero,

∫
G(0)

a(0, v) dv = 0. There is no outside asset.

Preferences and budget constraints. Each individual has preferences over dated consumption
goods represented by a time-separable utility function with isoelastic instantaneous utility and
exponential discounting:∫

A(v)

e−ρ(t−v)u
[
c(t, v)

]
dt, u(c) := c1−σ − 1

1 − σ
, ρ � 0, σ > 0. (1)

For t ∈ A(v) the flow constraint facing an individual is:

ȧ(t, v) = r(t)a(t, v) + y(t, v) − c(t, v) (2)

where a dot denotes differentiation with respect to time and with given initial conditions a(v, v)

and instantaneous interest rate r(t).
We can integrate the flow constraint to get each individual’s intertemporal budget constraint:∫

A(v)

p(t)c(t, v) dt =
∫

A(v)

p(t)y(t, v) dt + p(v)a(v, v) (3)

where p(t) is the intertemporal price of consumption, ṗ(t)/p(t) =: −r(t). Using y(t, v) = 0 for
all (t, v) /∈ A(v) × G(t) and a(v, v) = 0 for all v > 0, the right-hand side of the intertemporal
constraint can be written:

W(p,v) :=
∞∫

0

p(s)y(s, v) ds + p(0)a(0, v) (4)

where W(p,v) denotes an individual’s intertemporal wealth as of date t = 0 given prices p.

Optimization. Taking prices as given, each individual chooses consumption c(t, v) � 0 to max-
imize utility (1) subject to their intertemporal constraint (3). This is a concave programming
problem over a convex constraint set. The first order condition characterizing consumption is:

e−ρ(t−v)c(t, v)−σ = λ(v)p(t) (5)

where λ(v) � 0 is the time-invariant Lagrange multiplier on the intertemporal budget constraint
of generation v. Differentiating both sides of (5) with respect to t gives the standard consumption
Euler equation ċ(t, v)/c(t, v) = (r(t) − ρ)/σ .

Using the intertemporal constraint, the solution for the Lagrange multiplier is:

λσ (p, v) :=
[ ∫

A(v)

e− ρ
σ

(s−v)p(s)
σ−1
σ ds

]σ

W(p,v)−σ . (6)

Plugging this solution for the multiplier into (5) gives the consumption function:

cσ (p, t, v) := ασ (p, t, v)
W(p,v)

p(t)
(7)

where ασ (p, t, v) denotes the expenditure shares:

ασ (p, t, v) := e− ρ
σ

tp(t)
σ−1
σ∫

e− ρ
σ

sp(s)
σ−1
σ ds

. (8)

A(v)
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In the special case of log utility (σ = 1), we have the familiar property that expenditure shares
do not depend on prices p.

Equilibrium. An equilibrium is feasible consumption c � 0 and a price p > 0 such that (i) taking
as given prices, each individual chooses consumption to maximize utility, and (ii) markets clear:∫

G(t)

cσ (p, t, v) dv =
∫

G(t)

y(t, v) dv =: Y(t). (9)

The aggregate endowment Y(t) > 0 is exogenous, so we know the right-hand side of (9). We
need to find a function p that ensures that markets clear on all dates. That is, we have to solve
a nonlinear integral equation for p. The market clearing condition gives us an integral equation
of the ‘first kind,’ meaning that the unknown function p enters only inside the integral. In general
finding numerical solutions of first kind equations is harder that finding solutions of ‘second kind’
integral equations where the unknown function also enters outside the integral operator [6,9].3 In
Section 3 below, the properties of the consumption function (7) are used to rewrite (9) as a second
kind integral equation.

Because the consumption function is zero degree homogeneous in prices, if p is an equilib-
rium price, so is ξp for any scalar ξ > 0. We can only determine relative prices. Let p(0) = 1 be
the normalization.

Benchmark and the role of compositional effects. Since each individual satisfies their con-
sumption Euler equation, they all have the same consumption growth. But in general this does
not mean the growth of the aggregate endowment satisfies a corresponding ‘aggregate’ Euler
equation. In general Ẏ (t)/Y (t) �= (r(t) − ρ)/σ . To see this, multiply both sides of the Euler
equation by c(t, v) and integrate both sides over G(t) to get:∫

G(t)

ċ(t, v) dv = r(t) − ρ

σ

∫
G(t)

c(t, v) dv = r(t) − ρ

σ
Y (t).

But using Leibniz’s rule:

Ẏ (t) = d

dt

∫
G(t)

c(t, v) dv = c(t, t) − c(t, t − l) +
∫

G(t)

ċ(t, v) dv

= c(t, t) − c(t, t − l) + r(t) − ρ

σ
Y (t).

Only if the consumption of the very young and very old is the same, c(t, t) = c(t, t − l), does this
reduce to the familiar benchmark Ẏ (t)/Y (t) = (r(t) − ρ)/σ in which case the equilibrium price
function is simply log[p(t)] = −ρt − σ

∫ t

0 γ (s) ds with γ (t) := Ẏ (t)/Y (t) the instantaneous
growth rate of the aggregate endowment. See Blanchard [2] and Weil [3] for further discussion.

3 If the right-hand side of (9) is smooth then the unknown function p has to be something that when integrated gives
a smooth answer. But lots of badly behaved functions are smooth after they have been integrated. See [9] for detailed
discussion of these ill-posed inversion problems.
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3. Integral equation representation of equilibrium prices

The main contribution of this paper is a simple functional equation representation of the equi-
librium fixed point problem. Intertemporal prices p solve a fixed point problem of the form
p = Tσ p where Tσ is defined by a nonlinear integral operator.

Proposition 1. Intertemporal prices p solve the nonlinear integral equation:

p(t) =
∞∫

0

p(s)kσ (p, t, s) ds + fσ (p, t) (10)

where

kσ (p, t, s) :=
∫

G(t)

ασ (p, t, v)
y(s, v)

Y (t)
dv (11)

and

fσ (p, t) :=
∫

G(t)

ασ (p, t, v)
a(0, v)

Y (t)
dv (12)

and where the expenditure shares ασ (p, t, v) are given by Eq. (8).

Proof. Substitute the consumption function cσ (p, t, v) from (7) into the market clearing condi-
tions (9) and multiply both sides by p(t) to get:

p(t)Y (t) =
∫

G(t)

ασ (p, t, v)W(p,v) dv. (13)

Now substitute in the definition of intertemporal wealth:

p(t)Y (t) =
∫

G(t)

ασ (p, t, v)

[ ∞∫
0

p(s)y(s, v) ds + p(0)a(0, v)

]
dv.

And change the order of integration for the double integral on the right-hand side of this expres-
sion (for this calculation, t is taken as a parameter) to get:

p(t)Y (t) =
∞∫

0

∫
G(t)

ασ (p, t, v)p(s)y(s, v) dv ds + p(0)

∫
G(t)

ασ (p, t, v)a(0, v) dv.

If we divide both sides by Y(t) > 0 and define kσ (p, t, s) and fσ (p, t) as in (11)–(12), then we
have the desired representation. �

Eq. (10) is a nonlinear Urysohn integral equation [7]. The right-hand side of (10) defines an
operator Tσ that takes prices as an argument:

(Tσ p)(t) :=
∞∫

0

kσ (p, t, s) ds + fσ (p, t). (14)

Equilibrium prices are fixed points of this operator. In practice, approximations to equilibrium
prices can be obtained by iterating on Tσ , as outlined below.
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4. Solving the model with log utility

In the special case of log utility, the operator Tσ is linear. This is interesting in its own right,
but also, because it makes the log case especially easy to solve, helps provide a ‘good’ initial
condition for approximate solutions of the general problem computed by iterating on Tσ .

4.1. Linear integral equation

As σ → 1 the expenditure shares no longer depend on p and we have:

lim
σ→1

ασ (p, t, v) = e−ρt∫
A(v)

e−ρs ds
=: α(t, v). (15)

For generations v � 0 expenditure shares are proportional to e−ρ(t−v) with a constant of propor-
tionality ensuring they integrate to 1 over a lifetime of length l. We now have:

lim
σ→1

kσ (p, t, s) =
∫

G(t)

α(t, v)
y(s, v)

Y (t)
dv =: k(t, s) (16)

and

lim
σ→1

fσ (p, t) =
∫

G(t)

α(t, v)
a(0, v)

Y (t)
dv =: f (t) (17)

both independent of prices. So the nonlinear Urysohn integral equation (10) becomes:

p(t) =
∞∫

0

p(s)k(t, s) ds + f (t). (18)

This is a linear Fredholm equation of the second kind [6–9,11].4 Equilibrium prices are fixed
points p = Tp of the linear operator T := limσ→1 Tσ .

Discussion. Let K denote the linear integral operator implied by the kernel function k(t, s) so
that equilibrium prices solve p = Tp = Kp + f . Then if the resolvent operator R =: ∑∞

i=0 Ki

exists, we have:

p = (I − K)−1f = Rf = f + KRf.

A standard sufficient condition for the resolvent operator to exist is that the operator norm
‖K‖ < 1 [6,11]. Intuitively, this ensures

∑∞
i=0 Ki converges to a well behaved limiting oper-

ator.
The properties of equilibrium prices are determined by the known integral kernel func-

tion k(t, s) and the known forcing process f (t).

4 Many macroeconomists will be familiar with linear Fredholm integral equations of the second kind. A leading exam-
ple is the Lucas [12] asset pricing model where the unknown function is the price of the single non-storable consumption
good in a given state where the state follows an exogenous Markov process with continuous support. See [13] for further
discussion.
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Integral kernel. The integral kernel k(t, s) encodes information about the (appropriately dis-
counted) relative scarcity of consumption goods at different dates (t, s). Since y(t, v) = 0 for all
(t, v) /∈ A(v) × G(t), the integral kernel can be rewritten:

k(t, s) =

⎧⎪⎨
⎪⎩

0 if s < t − l,

k−(t, s) if t − l � s < t,

k+(t, s) if t � s � t + l,

0 if s > t + l

(19)

where

k−(t, s) :=
s∫

max{0,t−l}
α(t, v)

y(s, v)

Y (t)
dv, t − l � s < t (20)

and

k+(t, s) :=
t∫

max{0,s−l}
α(t, v)

y(s, v)

Y (t)
dv, t � s � t + l. (21)

Forcing process. The know forcing process f (t) inherits its key properties from the distribution
of initial assets a(0, v). In particular, because a(0, v) = 0 for v > 0, we also have f (t) = 0
for t > l. That is, for t > l there are no more living transitional generations and their direct
influence on current prices is exactly zero. Of course, the transitional generations continue to
have an indirect effect. The first round of indirect effects takes place because the forcing process
at (say) the point t = l/2 directly affects the price at t and indirectly affects all the prices on dates
[0, l/2 + l] through the kernel. There is also a whole collection of higher order rounds of indirect
effects so the value of the forcing function at any date t � l matters for the whole price function.

Example: balanced growth. Let the aggregate endowment grow at rate γ � 0 so that Y(t) = eγ t

and let the endowment be uniformly distributed with ϕ(t, v) = 1/l for all (t, v) ∈ A(v) × G(t).
Then for t > l so that we are removed from the influence of the transitional generations:

k−(t, s) = βe(γ+ρ)(s−t)
[
1 − e−ρ(s−t+l)

]
(22)

and

k+(t, s) = βeγ (s−t)
[
1 − e−ρ(t−s+l)

]
(23)

where β := 1/[(1 − e−ρl)l]. Notice that k− is increasing in s and that k+ is decreasing in s

and k−(t, t) = k+(t, t) = 1/l. In short, the kernel is a two-sided smoother around the point t

giving most weight to s close to t (and zero weight to those s that are more than l from the
current t). Around t the speed at which the weight given to s falls off depends on the rate of time
preference ρ and the growth rate of the aggregate endowment γ . The weights diminish faster
when the rate of time preference is higher.

Given that f (t) = 0 for t > l, the integral equation characterizing equilibrium prices can be
written:

p(t) =
t+l∫

p(s)k(t, s) ds, t > l. (24)
t−l
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And with this balanced growth example, from (22)–(23), the integral kernel can be written as
a function of t − s only, k(t, s) = k̂(t − s). So (24) provides a simple way of solving for the
steady-state price path along which ṗ(t)/p(t) = −r for some constant interest rate r . We have:

1 =
t+1∫

t−l

e−r(s−t)k(t, s) ds =
+l∫

−l

e−rzk̂(z) dz, t > l (25)

which is one equation to be solved for r (there may be several solutions). This interest rate
characterizes the limiting equilibrium price path, p(t) ∼ e−rt for large t , but since f (t) affects
prices at all t , even for this simple example equilibrium prices will not exactly equal e−rt at
any t . Also, the steady-state interest rate r does not generally equal the benchmark ρ + γ that
would obtain with log utility when there are no compositional effects.

One approach to solving the model numerically would be to use local approximation methods
based on perturbing the price path p(t) around e−rt . But this neglects the role of transitional gen-
erations and makes such solutions unattractive for analyzing both the effects of policy changes
along a transition path as well as the full welfare implications of such policy changes. For linear
Fredholm integral equations of the second kind, like (18), there are several well known global ap-
proximation methods, as outlined below, and so there is no need for local approximations around
steady-state.

4.2. Global approximation of p(t) with log utility

The two most common global approximation methods for solving a linear integral equation
like (18) are Nystrom’s extension and the method of approximation by separable kernels. Both
methods reduce the integral equation problem to a finite dimensional linear algebra problem.
Since these methods are well known in the numerical analysis literature [6–9], the discussion
here is deliberately terse.

Nystrom’s extension. Let si , ωi for i = 1, . . . , J denote a set of J numerical quadrature nodes
and weights that allow us to approximate the integral operator on the right-hand side of (18) by
a finite sum:

∞∫
0

p(s)k(t, s) ds ≈
J∑

i=1

p(si)k(t, si)ωi . (26)

Then the linear integral equation can be approximated by the finite system of equations:

pi =
J∑

j=1

pjkij + fi, i = 1, . . . , J (27)

where in a slight abuse of notation, pi := p(si), kij := k(si, sj ) and fi := f (si). In matrix nota-
tion, p = Kp + f. If det(I − K) �= 0 then there is a unique vector, call it p̂, given by the resolvent
matrix R = (I − K)−1 so that p̂ = Rf = (I − K)−1f. This gives us approximate equilibrium
prices p̂i at the numerical quadrature nodes si , for i = 1, . . . , J . Nystrom’s extension then gives
prices for any t ∈ [0,∞) using:

p(t) =
J∑

i=1

p̂ik(t, si)ωi + f (t). (28)
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Separable kernels. If the integral kernel can be written k(s, t) = ∑J
i=1 gi(s)hi(t) for a finite

collection of (known) basis functions gi(s) and hi(t) then it is separable. In this case, the linear
integral equation (18) reduces exactly to a finite dimensional linear algebra problem and has the
solution:

p(t) =
J∑

i=1

p̂ihi(t) + f (t) (29)

where p̂i for i = 1, . . . , J denote the solutions to the finite system of equations pi =∑J
j=1 pjkij + fi [as in (27)]. And exploiting the separability of the kernel we have exact formu-

las for the coefficients:

kij :=
∞∫

0

hi(t)gi(t) dt (30)

and

fi :=
∞∫

0

hi(t)f (t) dt. (31)

If the kernel is separable, then (29) gives an exact global solution for the equilibrium price func-
tion. In general, the kernel will not be separable but can be arbitrarily well approximated as such
k(s, t) ≈ ∑J

i=1 gi(s)hi(t) for large enough J and appropriate basis functions gi(s) and hi(t).

4.3. Numerical examples

The following examples were computed using Nystrom’s extension. In each case, the lifetime
was set to l = 75 years.

Stationary economy. Let the aggregate endowment be constant and the distribution of individ-
ual endowments within the current population be uniform, ϕ(t, v) = 1/l. The solid line in Fig. 1
is the equilibrium price function when the time discount rate is ρ = 0.05. The dashed line is
the benchmark e−0.05t which gives the equilibrium prices that would obtain in an analogous
representative agent model. The equilibrium real interest rates in this continuous time overlap-
ping generations economy are high. For this example, the initial asset distribution has old agents
with positive assets and young agents with negative assets. The top row of Fig. 2 shows the ini-
tial asset distribution a(0, v), the corresponding forcing process f (t), and again the equilibrium
prices p(t). The bottom row of Fig. 2 shows the reverse case, when the young have assets and the
old have liabilities. The forcing process f (t) obtains much of its shape from key properties of the
initial asset distribution, so, for example, when the initial old have positive assets then f (0) > 0
and f (t) → 0− as t → l−. The reverse is true when the old have initial liabilities. In this exam-
ple, the equilibrium price function is not very sensitive to properties of the forcing process. The
dashed lines show the same objects but with a higher discount rate of ρ = 0.10. This has a much
greater influence over the whole price function.

Distributional effects. The top panel of Fig. 3 shows the equilibrium price function p(t) for
the case of a uniform distribution of individual endowments and for ‘hump-shaped’ individual
endowments that are a quadratic function of age, proportional to (t − v)(l − t + v). The only
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Fig. 1. Equilibrium intertemporal prices p(t) versus benchmark e−ρt .

Fig. 2. Sensitivity to initial asset distribution a(0, v). Solid lines have discount rate ρ = 0.05, dashed lines have ρ = 0.10.
Equilibrium prices are much more sensitive to ρ than to the initial distribution.

difference between these economies is the distribution of individual endowments. These different
patterns of individual endowments lead to quite pronounced differences in equilibrium prices. To
get some sense of how big an influence is exerted by the pattern of individual endowments,
consider the bottom panel of Fig. 3. This shows the same exercise but with growing endowments



606 C. Edmond / Journal of Economic Theory 143 (2008) 596–609
Fig. 3. The change in the distribution of individual endowments (from uniform to ‘hump-shaped’ in age) has a large
effect on p(t). The top panel has discount rate ρ = 0.05 and no aggregate endowment growth γ = 0. The bottom panel
has growing aggregate endowment γ = 0.05.

Y(t) = e0.05t . Relative to this increase in the aggregate growth rate, the change in the distribution
of individual endowments has a large effect on equilibrium prices.

5. Solving the model with general isoelastic utility

Recall that we are interested in solutions to the fixed point problem p = Tσ p where Tσ is the
nonlinear operator:

(Tσ p)(t) =
∞∫

0

p(s)kσ (p, t, s) ds + fσ (p, t).

Global approximations to the equilibrium price function can be obtained by iterating on an ap-
proximating nonlinear operator formed using numerical quadrature. Suppose we have a J -point
quadrature rule with nodes ti and weights ωi for t ∈ [0,∞). Suppose also that we have some
J -dimensional candidate price vector p̂n with typical elements p̂n,i . For example, this candidate
price vector may be the solution from the same model but with log utility.

Now associate with each ti a set of M quadrature nodes zmi and weights δmi that give nu-
merical integration over [ti − l, ti). Write the approximate expenditure shares given the price
function p̂n as α̂n with typical elements:

α̂n,mi := e− ρ
σ

ti p̂
σ−1
σ

n,i∑J
e− ρ

σ
tj p̂

σ−1
σ 1{t ∈ A(z )}ω

(32)
j=1 n,j j mi j
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for i = 1, . . . , J and m = 1, . . . ,M (in this expression, 1 denotes the indicator function). Simi-
larly compute elements k̂n,ij and f̂n,ij according to:

k̂n,ij :=
M∑

m=1

α̂n,mi

y(tj , zmi)

Y (ti)
δmiωj (33)

and

f̂n,i :=
M∑

m=1

α̂n,mi

a(0, zmi)

Y (ti)
δmi (34)

for i, j = 1, . . . , J . With these formulas in hand, a new estimate of the price vector p̂n+1 is
computed with typical elements given by the formula:

p̂n+1,i =
J∑

j=1

p̂n,j k̂n,ij + f̂n,i (35)

for i = 1,2, . . . , J .
Now test if the norm ‖p̂n+1 − p̂n‖ meets some pre-set tolerance criterion. If not, update

to (say) p̂n+1 and compute new expenditure shares, α̂n+1,mi , and new coefficients, k̂n+1,ij

and f̂n+1,i , using (33)–(34). This procedure is repeated until ‖p̂n+1 − p̂n‖ is sufficiently small.

6. Related literature

Work on continuous time overlapping generations economies began with Cass and Yaari [14].
They study a model with finite horizons, log utility and physical capital. They derive the pos-
sibility of multiple balanced growth equilibria [analogous to multiple solutions r to (25)] and
examine the ways in which dynamic efficiency can be addressed in such a setting. Overlapping
generations models with continuous time but infinite horizons were studied by Blanchard [2] and
Weil [3]. Farmer [15] uses a stochastic version of Weil’s model for business cycle analysis. The
tradition of using long-lived discrete time overlapping generations models for policy analysis is
due to Auerbach and Kotlikoff [4]. Ríos-Rull [5] is the standard reference on related long-lived
discrete time stochastic overlapping generations economies. Burke [16] tackled the problem of
equilibrium existence in a continuous time overlapping generations setting.

A closely related paper is Demichelis and Polemarchakis [17] who discuss a continuous time
overlapping generations economy with log utility but no discounting and restrictive assumptions
about endowments.5 D’Albis and Augeraud-Véron have two other closely related papers [18,19].
In [18] they have production and log utility but age-independent wages, i.e., every individual
alive at t receives the same competitive wage (there is no heterogeneity in the quantity of ef-
ficiency units supplied over the life-cycle). Production exhibits constant returns in capital so
the real interest rate and hence intertemporal prices are essentially exogenous. They then de-
rive capital accumulation paths consistent with asset market clearing. They study the problem by
recasting the integral equation that emerges naturally from market clearing conditions as a delay-
differential equation. In [19] they study an exchange economy with age-independent endowments

5 The advantage of these additional assumptions give rise to a linear integral equation of the convolution kind that can
essentially be solved in closed form by Fourier transformation.



608 C. Edmond / Journal of Economic Theory 143 (2008) 596–609
but general isoelastic utility. The analysis uses local perturbations to a steady-state and ignores
transitional generations.

7. Conclusions

This note provides a method for solving for the dynamic general equilibrium of a determin-
istic continuous time overlapping generations model. The model allows for isoelastic utility and
general assumptions about individual endowments (and demographics). The computational task
in solving for an equilibrium reduces to solving a specific nonlinear integral equation problem.
In the case of log utility the integral equation becomes linear and global approximations can be
obtained with finite dimensional linear algebra. The paper outlines a numerical procedure for
solving the general integral equation and provides examples.

A continuous time overlapping generations model useful for applied macroeconomics must
also be able to handle stochastic environments, capital accumulation and elastic labor supply,
amongst other things. Perhaps the framework developed in this paper can be extended along
these lines.
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Appendix A. Variable demographics and within-cohort heterogeneity

The mass of agents of generation v ∈ (−l,∞) at date t � 0 is assumed to be given
by a function n(t, v) � 0. This notation allows for exogenously given changes in the rel-
ative proportions of young and old. Let each generation be a continuum [0,1] of individ-
uals indexed by i with idiosyncratic endowment y(i, t, v) � 0 at t and aggregate endow-
ment Y(t) := ∫ 1

0

∫
G(t)

y(i, t, v)n(t, v) dv di. Let the initial asset distribution be a(i,0, v) with∫ 1
0

∫
G(0)

a(i,0, v)n(0, v) dv di = 0. Individual consumption is again given by:

cσ (p, i, t, v) := ασ (p, t, v)
W(p, i, v)

p(t)

where ασ (p, t, v) denotes the expenditure shares, the same as in (8), and where individual in-
tertemporal wealth is:

W(p, i, v) :=
∞∫

0

p(s)y(i, s, v) ds + p(0)a(i,0, v).

Market clearing requires
∫ 1

0

∫
G(t)

cσ (p, i, t, v)n(t, v) dv di = Y(t). This can be rearranged to give

the Urysohn integral equation p(t) = ∫ ∞
0 p(s)kσ (p, s, t) ds + fσ (p, t) as in (10) but now:

kσ (p, t, s) =
1∫ ∫

ασ (p, t, v)
y(i, s, v)

Y (t)
n(t, v) dv di
0 G(t)
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and

fσ (p, t) =
1∫

0

∫
G(t)

ασ (p, t, v)
a(i,0, v)

Y (t)
n(t, v) dv di.

This allows for general endowments and demographics but otherwise the analysis is the same.
Almost immediately this allows the model to be generalized to an economy with determinis-

tic aggregate endowment but stochastic idiosyncratic endowments that can be insured away by
dynamically complete markets (in which case equilibrium individual consumption is determinis-
tic).
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